Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Environ Sci Pollut Res Int ; 31(13): 19575-19594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363508

RESUMO

Vector-borne diseases pose a significant public health challenge in economically disadvantaged nations. Malaria, dengue fever, chikungunya, Zika, yellow fever, Japanese encephalitis, and lymphatic filariasis are spread by mosquitoes. Consequently, the most effective method of preventing these diseases is to eliminate the mosquito population. Historically, the majority of control programs have depended on chemical pesticides, including organochlorines, organophosphates, carbamates, and pyrethroids. Synthetic insecticides used to eradicate pests have the potential to contaminate groundwater, surface water, beneficial soil organisms, and non-target species. Nanotechnology is an innovative technology that has the potential to be used in insect control with great precision. The goal of this study was to test the in vitro anti-dengue potential and mosquitocidal activity of Chaetomorpha aerea and C. aerea-synthesized Mn-doped superparamagnetic iron oxide nanoparticles (CA-Mn-SPIONs). The synthesis of CA-Mn-SPIONs using C. aerea extract was verified by the observable alteration in the colour of the reaction mixture, transitioning from a pale green colour to a brown. The study of UV-Vis spectra revealed absorbance peaks at approximately 290 nm, which can be attributed to the surface Plasmon resonance of the CA-Mn-SPIONs. The SEM, TEM, EDX, FTIR, vibrating sample magnetometry, and XRD analyses provided evidence that confirmed the presence of CA-Mn-SPIONs. In the present study, results revealed that C. aerea aqueous extract LC50 values against Ae. aegypti ranged from 222.942 (first instar larvae) to 349.877 ppm in bioassays (pupae). CA-Mn-SPIONs had LC50 ranging from 20.199 (first instar larvae) to 26.918 ppm (pupae). After treatment with 40 ppm CA-Mn-SPIONs and 500 ppm C. aerea extract in ovicidal tests, egg hatchability was lowered by 100%. Oviposition deterrence experiments showed that in Ae. aegypti, oviposition rates were lowered by more than 66% by 100 ppm of green algal extract and by more than 71% by 10 ppm of CA-Mn-SPIONs (oviposition activity index values were 0.50 and 0.55, respectively). Moreover, in vitro anti-dengue activity of CA-Mn-SPIONs has good anti-viral property against dengue viral cell lines. In addition, GC-MS analysis showed that 21 intriguing chemicals were discovered. Two significant phytoconstituents in the methanol extract of C. aerea include butanoic acid and palmitic acid. These two substances were examined using an in silico methodology against the NS5 methyltransferase protein and demonstrated good glide scores and binding affinities. Finally, we looked into the morphological damage and fluorescent emission of third instar Ae. aegypti larvae treated with CA-Mn-SPIONs. Fluorescent emission is consistent with ROS formation of CA-Mn-SPIONs against Ae. aegypti larvae. The present study determines that the key variables for the successful development of new insecticidal agents are rooted in the eco-compatibility and the provision of alternative tool for the pesticide manufacturing sector.


Assuntos
Aedes , Clorófitas , Dengue , Inseticidas , Nanopartículas Metálicas , Alga Marinha , Infecção por Zika virus , Zika virus , Animais , Feminino , Prata/química , Nanopartículas Metálicas/química , Mosquitos Vetores , Nanopartículas Magnéticas de Óxido de Ferro , Inseticidas/química , Dengue/prevenção & controle , Larva , Extratos Vegetais/farmacologia , Folhas de Planta/química
2.
Bioprocess Biosyst Eng ; 46(10): 1483-1498, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552312

RESUMO

In the current scenario, many synthetic chemicals have used long-term to control pests and mosquitoes, leading to the resistance of strains and toxicity effect on human beings. To overcome the adverse problem in recent advances, the scientific community is looking into nanofabricated pesticides and mosquitoes. This study aims to synthesize the recyclable chitosan-coated cadmium nanoparticles (Ch-CdNps) using Plumeria alba flower extract, which was further applied for insecticidal and mosquitocidal activities. The synthesized Ch-CdNps were confirmed by UV spectroscopy and FTIR analysis. The XRD, TEM, and DLS results confirmed the crystallinity with a spherical shape at 80-100 nm. The insecticidal activity proves that Ch-CdNps inhibited Helicoverpa armigera and Spodoptera litura at 100 ppm. In mosquitocidal, LC50 values of larvicidal of 1st instar were 4.116, 4.33, and 4.564 µg/mL, and the remaining three stages of instars, pupicidal, adulticidal, longevity, fecundity, and ovicidal assays inhibit the Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus. Further, the first-order kinetics of photocatalytic degradation of methylene blue and methyl orange was confirmed. Based on the obtained results, Ch-CdNps can inhibit the pest, mosquitoes, and photocatalytic degradation.


Assuntos
Aedes , Apocynaceae , Quitosana , Inseticidas , Nanopartículas Metálicas , Animais , Humanos , Cádmio , Quitosana/farmacologia , Larva , Extratos Vegetais/química , Nanopartículas Metálicas/química , Inseticidas/química , Controle de Pragas , Flores , Folhas de Planta/química
3.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142546

RESUMO

Green nanotechnology is currently a very crucial and indispensable technology for handling diverse problems regarding the living planet. The concoction of reactive oxygen species (ROS) and biologically synthesized silver nanoparticles (AgNPs) has opened new insights in cancer therapy. The current investigation caters to the concept of the involvement of a novel eco-friendly avenue to produce AgNPs employing the wild endolichenic fungus Talaromyces funiculosus. The synthesized Talaromyces funiculosus-AgNPs were evaluated with the aid of UV visible spectroscopy, dynamic light scattering (DLS), Fourier infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized Talaromyces funiculosus-AgNPs (TF-AgNPs) exhibited hemo-compatibility as evidenced by a hemolytic assay. Further, they were evaluated for their efficacy against foodborne pathogens Staphylococcus aureus, Streptococcus faecalis, Listeria innocua, and Micrococcus luteus and nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis bacterial strains. The synthesized TF-AgNPs displayed cytotoxicity in a dose-dependent manner against MDA-MB-231 breast carcinoma cells and eventually condensed the chromatin material observed through the Hoechst 33342 stain. Subsequent analysis using flow cytometry and fluorescence microscopy provided the inference of a possible role of intracellular ROS (OH-, O-, H2O2, and O2-) radicals in the destruction of mitochondria, DNA machinery, the nucleus, and overall damage of the cellular machinery of breast cancerous cells. The combined effect of predation by the cyclopoid copepod Mesocyclops aspericornis and TF-AgNPS for the larval management of dengue vectors were provided. A promising larval control was evident after the conjunction of both predatory organisms and bio-fabricated nanoparticles. Thus, this study provides a novel, cost-effective, extracellular approach of TF-AgNPs production with hemo-compatible, antioxidant, and antimicrobial efficacy against both human and foodborne pathogens with cytotoxicity (dose dependent) towards MDA-MB-231 breast carcinoma.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Nanopartículas Metálicas , Talaromyces , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Cromatina , Escherichia coli , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Prata/química , Prata/farmacologia
4.
Sci Rep ; 12(1): 4765, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35306526

RESUMO

Mosquito borne diseases are on the rise because of their fast spread worldwide and the lack of effective treatments. Here we are focusing on the development of a novel anti-malarial and virucidal agent with biocidal effects also on its vectors. We have synthesized a new quinoline (4,7-dichloroquinoline) derivative which showed significant larvicidal and pupicidal properties against a malarial and a dengue vector and a lethal toxicity ranging from 4.408 µM/mL (first instar larvae) to 7.958 µM/mL (pupal populations) for Anopheles stephensi and 5.016 µM/mL (larva 1) to 10.669 µM/mL (pupae) for Aedes aegypti. In-vitro antiplasmodial efficacy of 4,7-dichloroquinoline revealed a significant growth inhibition of both sensitive strains of Plasmodium falciparum with IC50 values of 6.7 nM (CQ-s) and 8.5 nM (CQ-r). Chloroquine IC50 values, as control, were 23 nM (CQ-s), and 27.5 nM (CQ-r). In vivo antiplasmodial studies with P. falciparum infected mice showed an effect of 4,7-dichloroquinoline compared to chloroquine. The quinoline compound showed significant activity against the viral pathogen serotype 2 (DENV-2). In vitro conditions and the purified quinoline exhibited insignificant toxicity on the host system up to 100 µM/mL. Overall, 4,7-dichloroquinoline could provide a good anti-vectorial and anti-malarial agent.


Assuntos
Antimaláricos , Dengue , Inseticidas , Malária , Nanopartículas Metálicas , Animais , Antimaláricos/farmacologia , Cloroquina/farmacologia , Dengue/tratamento farmacológico , Inseticidas/farmacologia , Larva , Malária/tratamento farmacológico , Camundongos , Mosquitos Vetores , Extratos Vegetais/farmacologia , Pupa
5.
Oxid Med Cell Longev ; 2022: 3863138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251470

RESUMO

Green-based synthesis of metal nanoparticles using marine seaweeds is a rapidly growing technology that is finding a variety of new applications. In the present study, the aqueous extract of a marine seaweed, Gracilaria edulis, was employed for the synthesis of metallic nanoparticles without using any reducing and stabilizing chemical agents. The visual color change and validation through UV-Vis spectroscopy provided an initial confirmation regarding the Gracilaria edulis-mediated green synthesized silver nanoparticles. The dynamic light scattering studies and high-resolution transmission electron microscopy pictographs exhibited that the synthesized Gracilaria edulis-derived silver nanoparticles were roughly spherical in shape having an average size of 62.72 ± 0.25 nm and surface zeta potential of -15.6 ± 6.73 mV. The structural motifs and chemically functional groups associated with the Gracilaria edulis-derived silver nanoparticles were observed through X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy. Further, the synthesized nanoparticles were further screened for their antioxidant properties through DPPH, hydroxyl radical, ABTS, and nitric oxide radical scavenging assays. The phycosynthesized nanoparticles exhibited dose-dependent cytotoxicity against MDA-MB-231 breast carcinoma cells having IC50 value of 344.27 ± 2.56 µg/mL. Additionally, the nanoparticles also exhibited zone of inhibition against pathogenic strains of Bacillus licheniformis (MTCC 7425), Salmonella typhimurium (MTCC 3216), Vibrio cholerae (MTCC 3904), Escherichia coli (MTCC 1098), Staphylococcus epidermidis (MTCC 3615), and Shigella dysenteriae (MTCC9543). Hence, this investigation explores the reducing and stabilizing capabilities of marine sea weed Gracilaria edulis for synthesizing silver nanoparticles in a cost-effective approach with potential anticancer and antimicrobial activity. The nanoparticles synthesized through green method may be explored for their potential utility in food preservative film industry, biomedical, and pharmaceutical industries.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Gracilaria/química , Química Verde/métodos , Nanopartículas Metálicas/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Alga Marinha/química , Prata/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Testes de Sensibilidade Microbiana , Tamanho da Partícula
6.
J Infect Public Health ; 15(4): 491-497, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34688575

RESUMO

BACKGROUND: Lichens were used as an ailment in the traditional medicine for treating various disorders for centuries. Since there is less evidence in the literature about the medicinal property of Parmelia sulcata (P. sulcata), we made a pioneer attempt to explore the antioxidant and antimicrobial properties of lichens. METHODS: In the present study, the three Samples were collected by using the column chromatography by elucidating the ethyl acetate extract of P. sulcata, and the samples were subjected to DPPH and ABTS assays to find the free radical scavenging activity, total phenols and flavonoids were estimated. The minimum inhibitory concentration was evaluated against the bacterial species (Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) and fungal species (Candida albicans and Aspergillus fumigatus) by the microdilution method. The best activity sample was analyzed using the Gas Chromatography-Mass Spectrometry (GC-MS), Fourier Transmission Infrared Spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR). RESULTS: The results shown that all the samples contain phenols and flavonoids which are responsible for antioxidants, antibacterial and antifungal activities. Among that sample-3 shown best antimicrobial activity and it was analyzed and identified as 7-hydroxy-3-(2-methylbut-3-en2-yl)-chromen-2-one. CONCLUSION: The outcome of the study suggests that sample-3 shown good antimicrobial activity and identified as 7-hydroxy-3-(2-methylbut-3-en2-yl)-chromen-2-one. It can be a resource for further studies.


Assuntos
Anti-Infecciosos , Líquens , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Flavonoides/farmacologia , Humanos , Líquens/química , Testes de Sensibilidade Microbiana , Parmeliaceae , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Sci Rep ; 11(1): 19567, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599250

RESUMO

Mosquitoes are a great menace for humankind since they transmit pathogenic organisms causing Malaria, Dengue, Chikungunya, Elephantiasis and Japanese encephalitis. There is an urgent need to discover new and novel biological tools to mitigate mosquito-borne diseases. To develop bioinsecticides through newly developed nanotechnology is another option in the present research scenario. In this study we synthesize and characterize sardine fish scales with silver nitrate by adopting various instrumental techniques such as UV- and FTIR-spectroscopy, energy-dispersive X-ray (EDAX), X-ray diffraction analyses (XRD) and scanning electron microscopy (SEM). Toxicity bioassays were conducted with young developmental stages of mosquito vectors. Significant mortality appeared after different life stages of mosquito vectors (young larval and pupal instars were exposed to the nanomaterials). LC50 values were 13.261 ppm for young first instar larvae and 32.182 ppm for pupae. Feeding and predatory potential of G. affinis, before and after exposure to nanoparticles against mosquito larval (I & II) instars of the mosquitoes showed promising results in laboratory experiments. Feeding potential of mosquito fish without nanoparticle treatment was 79.7% and 70.55% for the first and second instar larval populations respectively. At the nanoparticle-exposed situation the predatory efficiency of mosquitofish was 94.15% and 84.3%, respectively. Antioxidant enzymes like (SOD), (CAT), and (LPO) were estimated in the gill region of sardine fish in control and experimental waters. A significant reduction of egg hatchability was evident after nanoparticle application. It became evident from this study that the nano-fabricated materials provide suitable tools to control the malaria vector Anopheles stephensi in the aquatic phase of its life cycle. This finding suggests an effective novel approach to mosquito control.


Assuntos
Escamas de Animais/química , Anopheles/efeitos dos fármacos , Peixes , Inseticidas/química , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Prata , Animais , Anopheles/parasitologia , Fenômenos Químicos , Concentração Inibidora 50 , Insetos Vetores/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Testes de Sensibilidade Parasitária , Prata/química , Análise Espectral
8.
Sci Rep ; 11(1): 8837, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893349

RESUMO

Microbes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV-vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Lawsonia (Planta)/química , Nanopartículas Metálicas/química , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Anti-Infecciosos/efeitos adversos , Antineoplásicos/efeitos adversos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Larva/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Análise Espectral/métodos , Difração de Raios X
9.
Artigo em Inglês | MEDLINE | ID: mdl-33418082

RESUMO

Since nano-quantum dots (QDs) are increasingly used as fluorescent dyes in biomedical sciences, the possibility of QDs contaminating aquatic environments is generally increasing. There is concern about potential toxicity of QDs. However, their risks in the aquatic environment are not entirely understood. In this study, the freshwater crab Sinopotamon henanense was exposed to cadmium telluride (CdTe) QDs by intraperitoneal injection to detect the reproductive toxicity of QDs (1/32, 1/16 and 1/4 LD50; Crab was exposed for 1, 3, 5, and 7 days). After CdTe QD exposure, no significant effect was detected on the body weight and gonadosomatic index. Additionally, morphological observations showed tissue vacuolation in the testis, and inflammatory cell infiltration in the ovary. The submicroscopic structure showed that exposure to CdTe QDs damaged the organelles and cell structures of the gonads of S. henanense. Among the adverse effects, pathological changes in the nuclear membrane, mitochondria and lysosomes were particularly significant. Antioxidant enzymes responded differently to different doses of QDs. The 0.5-mg/kg dose induced superoxide dismutase activity in the testes. And in the 1-mg/kg and 4-mg/kg dose QD exposure test, the testis responded by activating glutathione peroxidase and inducing reduced glutathione and overconsuming glutathione peroxidase. Respectively, the ovaries responded by overconsuming superoxide dismutase and glutathione peroxidase and reduced glutathione. Thus, we conclude that the gonads of S. henanense were injured by CdTe QD, and male are better indicators of the toxicity of QDs than female crabs according to greater alterations in tissue structure and antioxidant enzyme in the analyses.


Assuntos
Braquiúros , Compostos de Cádmio/toxicidade , Ovário/efeitos dos fármacos , Pontos Quânticos/química , Telúrio/toxicidade , Testículo/efeitos dos fármacos , Animais , Compostos de Cádmio/química , Feminino , Glutationa/metabolismo , Dose Letal Mediana , Peróxidos Lipídicos , Masculino , Pontos Quânticos/toxicidade , Reprodução , Telúrio/química
10.
J Environ Manage ; 266: 110572, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32392138

RESUMO

On considering the critical issues in attaining stringent water quality standards and not creating any environmental impacts, we focused for the first time the economically feasible, emerging technology known as Self-assembly flocculating (Saf process). In which, the study investigated the applicability of bioflocculant (a biopolymer-self-assembly in nature) act as a surrogates on relying the removal of broad spectrum of substances under optimized conditions (Dosage: 90 mg/L; pH: 7; CaCl2). On using different techniques, the results have proved in removing the organic matter such as pharmaceuticals (Gentamycin, Cholecalciferol, Fluvoxamine, 3-OH Desogestrel, and Pheniramine), endocrine disturbing compounds [Phthalic acid, Benzene, 1, 2, 4 -Trimethoxy-5-(1-Propenyl)-, Benzene, 1, 2-Dimethoxy-4-(2-Propenyl)-, 1, 2-Benzenedicarboxylic Acid, 3-Cyclohexen-1-ol], fluorescent components (Polysaccharide like material), and others. The toxicological assessment of self-assembly bioflocculant implemented on zebra fish were statistically correlated [r = 0.95, p < 0.01 and 0.05 for P1WW; r = 0.91, p < 0.01 and 0.05 for P2WW] and [r = 0.7 5, p < 0.05 for P1WT; r = 0.095, p < 0.01 and 0.05 for P2WT]. This integrated approach supplemented further information of zeta potential (-16 mV in P1WW and -14.6 mV in P2WW decreased to -1.05 mV and -1.56 mV) with particle size distribution to explain via Saf process. In this research, the new insight has established non-toxic, self-assembly, biodegradable, bioflocculant for effective bioremediation.


Assuntos
Corantes , Águas Residuárias , Animais , Biodegradação Ambiental , Biopolímeros , Floculação
11.
Environ Monit Assess ; 192(6): 377, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424801

RESUMO

Dissolved organic matter (DOM) especially anthropogenic compounds in sewage systems affects their ultimate fate in the environment which is challenging to ascertain the heterogenic nature of the compound and causes co-occurring effects in most aquatic samples. So, our study have focused on current approaches to the chemical and structural characterization of DOM with the detailed classification of individual compounds such as the molecular levels of volatile organic, inorganic materials, drugs and endocrine disrupting compounds. Analytical techniques for example high performance gas chromatography-mass spectrometry (GCMS) with high-resolution liquid chromatography (HR-LCMS), X-ray diffraction (XRD) and three-dimensional fluorescence excitation emission matrix (3D-EEM) has resulted in advancing the parametric studies. In addition, the toxicological assessment of an aquatic organism (zebrafish as a model) has ensued in enlightening the risk of contaminated sources. The result of the research highlighted the efficacy of high-throughput approaches to assess the environmental impact of sewage water.


Assuntos
Monitoramento Ambiental , Esgotos , Poluentes Químicos da Água , Água , Compostos Orgânicos/análise , Esgotos/química , Espectrometria de Fluorescência , Água/química , Poluentes Químicos da Água/análise
12.
Environ Sci Pollut Res Int ; 27(14): 16282-16292, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124281

RESUMO

Cadmium (Cd) is a highly harmful environmental contaminant, which can cause reproductive toxicity. Zinc (Zn) is an essential trance element that may protect the organism from the harmful effects of Cd. However, the mechanism of Zn against Cd-induced reproductive toxicity remained to be elucidated. The aim of this study was to assess the effects of subchronic exposure to Cd on the relative testis weight (RTW), the histopathology, the activity of stress marker antioxidant enzymes, the level of lipid peroxidation of testis, as well as the mitigative effects of Zn on Cd-induced reproductive toxicity in male freshwater crab Sinopotamon henanense. For this purpose, male crabs were divided into 10 groups including a control group (without metals) and metal exposure groups with Cd alone in three concentrations and Cd combined with Zn in six concentrations for 14 days. The results showed that Cd evoked concentration-dependent reproductive toxicity of male Sinopotamon henanense as showed by decreased RTW, appearance of morphological lesions, increased SOD, CAT, GPx activity, and MDA levels. Nevertheless, Zn combined with Cd exposure significantly alleviated Cd-induced reproductive toxicity as proved by increased RTW, reappearance of normal histological morphology, increased SOD activity, recovered CAT and GPx activity, and decreased MDA levels in testis. Our study demonstrated that the application of Zn can mitigate Cd-induced reproductive toxicity by ameliorating the testicular oxidative stress and improving the antioxidant status.


Assuntos
Braquiúros , Animais , Cádmio , Água Doce , Masculino , Estresse Oxidativo , Zinco
13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(4): 682-693, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31181977

RESUMO

Leucinodes orbonalis Guenée is serious quarantine pest occurring globally, studies are needed to enlighten the genetic complexities associated with the species. India is considered to be the origin of the L. orbonalis, therefore availability of species records from this region enable to analyse the genetic differences and dispersal of the lineages. The results of the study reported 47 haplotypes in four clusters pertaining to their ancestral lineage. The transition/transversion bias (R) was observed to be higher with 1.238 and 1.312 in the first and third codon positions respectively. The overall intraspecies divergence was found to be 0.302. AMOVA revealed that the total variations were then as reported 67.15 among the south-east countries but our studies reported the total variation to be 77.25% (Germany, India, South east and Australia). FST and Mantel's test indicated that there was no correlation between the genetic variation and geographical distance. The overall haplotype diversity was 0.852, where the nucleotide diversity of H31 (0.00593) was highest and H1 (0.00087) was lowest. The genetic diversity indices Tajima D and Fu's Fs static for H1, H13 and H31 had negative values which possibly inferred for the bottle neck effect. The ML tree was constituted the branch length of 5.0157 with one out-group. The tree was formed with ten distinctive clades with the haplotypes congregated together based on similar genetic composition.


Assuntos
Código de Barras de DNA Taxonômico , Variação Genética/genética , Mapeamento Geográfico , Lepidópteros/classificação , Lepidópteros/genética , Controle de Pragas , Quarentena , Animais , Especificidade da Espécie
14.
Environ Sci Pollut Res Int ; 26(23): 23886-23898, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31218582

RESUMO

The gold nanoparticles (AuNPs) were synthesized using the lichen Parmelia sulcata extract (PSE) and characterized. The peaks of ultraviolet spectrophotometer and Fourier transmission infrared confirmed the formation of nanoparticles and the bioactive compounds of the lichen being responsible for reducing and capping of the particles. The face-centered cubic particles were determined by XRD peaks at 111, 200, 220, and 311. The elemental composition and spherical shape of AuNPs were confirmed by energy-dispersive spectroscopy and transmission electron microscopy. The average particle size is 54 nm, and the zeta potential - 18 was ascertained by dynamic light scattering. The potential effect of synthesized nanoparticles and lichen extracts was evaluated for antioxidant bioassays like DPPH and H2O2 and tested for mosquitocidal activity against Anopheles stephensi. Results showed that the lichen extract and AuNPs have the capability to scavenge the free radicals with the IC50 values of DPPH being 1020 and 815 µg/ml and the IC50 values of H2O2 being 694 and 510 µg/ml, respectively. The mosquitocidal experimental results in this study showed the inhibition of A. stephensi and A. aegypti against the larvae (I-IV instar), pupae, adult, and egg hatching. On comparison, A. stephensi showed effective inhibition than A. aegypti even at low concentration. Based on the obtained results, gold nanoparticles synthesized using PSE showed an excellent mosquitocidal effect against Anopheles stephensi.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Ouro/química , Peróxido de Hidrogênio/análise , Larva/efeitos dos fármacos , Líquens/efeitos dos fármacos , Nanopartículas Metálicas/química , Pupa/efeitos dos fármacos , Animais , Ouro/análise , Peróxido de Hidrogênio/química
15.
Int J Biol Macromol ; 130: 997-1008, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844461

RESUMO

The aim of the present investigation is to explore the innovative platform for the synthesis of plant-based nanoparticles, which contain biocompatible and biodegradable carrier of chitosan loaded with phloretin hydrophobic phytochemical applied as a stable anticancer agent. Treatment of cancer uses chemotherapeutic drugs as the cells are resistant to other drugs. However, the usage of therapeutic drug is limited by its poor solubility and low bioavailability. To overcome this problem, we fabricated the phloretin loaded chitosan nanoparticles (PhCsNPs) and physicochemical properties of PhCsNPs were characterized by FTIR, XRD, DLS, SEM and TEM. The findings indicated that the synthesized PhCsNPs were spherical and homogeneous in shape with the size distribution of 80-100 nm and exhibited stability in ultimate drug releasing profile. Further, we substantiated the anticancer efficiency of PhCsNPs through bio-assessment, such as cytotoxicity measurement, intracellular ROS, mitochondrial dysfunction, lipid peroxidation measurement, antioxidants status, apoptotic associated gene expression profile and cell cycle analysis in human oral cancer cell lines. The findings suggested that PhCsNPs augmented the mitochondrial-mediated apoptotic mechanism through the stimulation of oxidative stress, depletion of cellular antioxidants and cell cycle arrest. Our data suggested that PhCsNPs could be used as an efficient therapeutic agent for the treatment of oral cancer.


Assuntos
Apoptose/efeitos dos fármacos , Quitosana , Concentração de Íons de Hidrogênio , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas , Floretina/química , Floretina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quitosana/química , Liberação Controlada de Fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Neoplasias Bucais , Nanopartículas/química , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise Espectral
16.
Chemosphere ; 222: 611-618, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30731381

RESUMO

In this present study, the biocorrosion behaviour of Bacillus thuringiensis EN2 and B. oleronius EN9 on copper metal CW024A (Cu) in cooling water system (1% chloride) were evaluated using weight loss, electrochemical impedance spectroscopy (EIS) and surface analysis. In presence of EN2 and EN9, the corrosion rates (CR) were higher, about 0.021 mm/y and 0.032 mm/y than control system (0.004 mm/y). On the other hand, the presence of corrosion inhibitor 2-mercaptopyridine (2-MCP) with bacteria (EN2 and EN9), the biofilm on metal surface was highly inhibited and thus reduces the corrosion rate (CR: 0.004 mm/y). The electrochemical behaviour of CW024A metal was correlated with the adsorbed corrosion inhibitor film and biofilm. Atomic force microscopy (AFM) analysis revealed that the presence of EN2 and EN9 more pits was observed on the metal surface rather than 2-MCP system. EIS confirms the inhibitor act as cathodic type of inhibitor and thus leads to the inhibition of CR. Overall, this work concluded that corrosion inhibitor (2-MCP) inhibits, the bacterial biofilm formation on the metal surface due to the formation of productive layer on metal surface as coordination of NH bond. Which leads to the reduction of bacterial attachment and thus higher corrosion inhibition efficiency (75%) obtained. This is the first work disclosing the role of 2-MCP formulations as potent anti-bacterial and corrosion inhibition efficiency on copper metal in cooling water tower environment.


Assuntos
Bactérias/efeitos dos fármacos , Cobre/química , Corrosão , Piridinas/farmacologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Microscopia de Força Atômica , Abastecimento de Água
17.
Regen Ther ; 9: 100-110, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30525080

RESUMO

INTRODUCTION: Anti-tuberculosis agent rifampicin is extensively used for its effectiveness. Possible complications of tuberculosis and prolonged rifampicin treatment include kidney damage; these conditions can lead to reduced efficiency of the affected kidney and consequently to other diseases. Bone marrow-derived mesenchymal stem cells (BMMSCs) can be used in conjunction with rifampicin to avert kidney damage; because of its regenerative and differentiating potentials into kidney cells. This research was designed to assess the modulatory and regenerative potentials of MSCs in averting kidney damage due to rifampicin-induced kidney toxicity in Wistar rats and their progenies. BMMSCs used in this research were characterized according to the guidelines of International Society for Cellular Therapy. METHODS: The rats (male and female) were divided into three experimental groups, as follows: Group 1: control rats (4 males & 4 females); Group 2: rats treated with rifampicin only (4 males & 4 females); and Group 3: rats treated with rifampicin plus MSCs (4 males & 4 females). Therapeutic doses of rifampicin (9 mg/kg/day for 3-months) and MSCs infusions (twice/month for 3-months) were administered orally and intravenously respectively. At the end of the three months, the animals were bred together to determine if the effects would carry over to the next generation. Following breeding, the rats were sacrificed to harvest serum for biochemical analysis and the kidneys were also harvested for histological analysis and quantification of the glomeruli size, for the adult rats and their progenies. RESULTS: The results showed some level of alterations in the biochemical indicators and histopathological damage in the rats that received rifampicin treatment alone, while the control and stem cells treated group showed apparently normal to nearly normal levels of both bio-indicators and normal histological architecture. CONCLUSIONS: Intravenous administration of MSCs yielded sensible development, as seen from biochemical indicators, histology and the quantitative cell analysis, hence implying the modulatory and regenerative properties of MSCs.

18.
Mar Pollut Bull ; 133: 402-414, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30041329

RESUMO

The study presents a spatio-seasonal distribution of 13 trace elements in the surface water (0-5 cm) along the north-south gradient of Hooghly River Estuary, India, and subsequently evaluates the human health risk by adopting USEPA standards. An overall homogeneous spatial distribution of elements was pronounced, whereas an irregular and inconsistent seasonal pattern were recorded for the majority of the elements. The concentration range (µg/l) of the elements and their relative variability were obtained as follows in the decreasing order: Al (55,458-104,955) > Fe (35,676-78,427) > Mn (651.76-975.78) > V (85.15-147.70) > Si (16.0-153.88) > Zn (26.94-105.32) > Cr (21.61-106.02) > Ni (19.64-66.72) > Cu (34.70-65.80) > Pb (26.40-37.48) > Co (11.16-23.01) > As (0.10-8.20) > Cd (1.19-5.53). Although Pb, Ni, Cr, Al, Fe, and Mn exceeded the WHO prescribed threshold limit for drinking water, Metal Pollution Index values (8.02-11.86) superseded the upper threshold limit endorsing adverse impact on biota. The studied elements were justified to have a non-carcinogenic risk as derived from hazard quotient and hazard index values. However, the trace elements As, Cd, Pb, and Cr exceeded the upper limit of cancer risk (10-4), thereby leading to carcinogenic risk concern for both children and adult population groups, where children are more susceptible than the adults. Hence, evaluation of bioavailable fractions of the elements is required for proper management of this stressed fluvial system.


Assuntos
Estuários , Metais/análise , Criança , Monitoramento Ambiental , Humanos , Índia , Medição de Risco , Rios , Análise Espaço-Temporal , Oligoelementos/análise
19.
Biochem Biophys Rep ; 14: 133-139, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29872745

RESUMO

Increased urbanization and increase in population has led to an increased demand for fuels. The result is the prices of fuels are reaching new heights every day. Using low-cost feedstocks such as rendered animal fats in biodiesel production will reduce biodiesel expenditures. One of the low-cost feedstocks for biodiesel production from poultry feathers. This paper describes a new and environmentally friendly process for developing biodiesel production technology from feather waste produced in poultry industry. Transesterification is one of the well-known processes by which fats and oils are converted into biodiesel. The reaction often makes use of acid/base catalyst. If the material possesses high free fatty acid then acid catalyst gives better results. The data resulted from gas chromatography (GC) revealed these percentages for fatty acid compositions: myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid and arachidonic acid. The biodiesel function group was analyzed by using FTIR. This study concluded that the rooster feathers have superior potential to process them into biodiesel than broiler chicken feathers fat because of fatty acid composition values and it has important properties of biodiesel.

20.
Acta Trop ; 183: 84-91, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625090

RESUMO

Culex mosquitoes can act as vectors of several important diseases, including Japanese encephalitis, West Nile virus, St. Louis encephalitis and equine encephalitis. Besides the neurological sequelae caused in humans, Japanese encephalitis can lead to abortion in sows and encephalitis in horses. Effective vector control and early diagnosis, along with continuous serosurveillance in animals, are crucial to fight this arboviral disease. However, the success of vector control operations is linked with the fast and reliable identification of targeted species, and knowledge about their biology and ecology. Since the DNA barcoding of Culex vectors of Japanese encephalitis is scarcely explored, here we evaluated the efficacy of this tool to identify and analyze the variations among five overlooked Culex vectors of Japanese encephalitis, Culex fuscocephala, Culex gelidus, Culex tritaeniorhynchus, Culex pseudovishnui and Culex vishnui, relying to the analysis of mitochondrial CO1 gene. Variations in their base pair range were elucidated by the entropy Hx plot. The differences among individual conspecifics and on base pair range across the same were studied. The C (501-750 bp) region showed a moderate variation among all the selected species. C. tritaeniorhynchus exhibited the highest variation in all the ranges. The observed genetic divergence was partially non-discriminatory. i.e., the overall intra- and inter nucleotide divergence was 0.0920 (0.92%) and 0.125 (1.25%), respectively. However, 10X rule fits accurately intraspecies divergence <3% for the five selected Culex species. The analysis of individual scatter plots showed threshold values (10X) of 0.008 (0.08%), 0.005 (0.05%), 0.123 (1.23%), 0.033 (0.33%) and 0.019 (0.19%) for C. fuscocephala, C. gelidus, C. tritaeniorhynchus, C. pseudovishnui and C. vishnui, respectively. The C. tritaeniorhynchus haplotypes KU497604, KU497603, AB690847 and AB690854 exhibited the highest divergence range, i.e., from 0.465 -0.546. Comparatively, the intra-divergence among the other haplotypes of C. tritaeniorhynchus ranged from 0-0.056. The maximum parsimony tree was formed by distinctive conspecific clusters with appreciable branch values illustrating their close congruence and extensive genetic deviations. Overall, this study adds valuable knowledge to the molecular biology and systematics of five overlooked mosquito species acting as major vectors of Japanese encephalitis in Asian countries.


Assuntos
Culex/genética , Código de Barras de DNA Taxonômico , Encefalite Japonesa/transmissão , Mosquitos Vetores/genética , Animais , Ásia , Culex/fisiologia , Ecologia , Variação Genética , Haplótipos , Humanos , Mosquitos Vetores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...